

ACCP vs. Atomicity in Additive Monoids of Cyclic Semirings

Timothy Chen ^{1, 2}

¹MIT PRIMES-USA

²University High School

Guanjie (Tony) Lu ^{1, 3}

³St. Mark's School of Texas

Alan Yao ^{1, 4}

⁴Glenda Dawson High School

Abstract & Timeline

- **1921** – Noether introduces **Ascending Chain Condition (ACCP)**
- **1968** – Cohn modifies definition to use principal ideals (ACCP) and incorrectly asserts **ACCP \Leftrightarrow atomic** for integral domains
- **1974** – Grams provides counterexample, implies **ACCP \subsetneq atomic**
- **1982, 1993, 2019, 2022, 2023, 2025** – Further counterexamples
- **1992** – Halter-Koch extends terms to **commutative monoids**
- **2022** – Correa-Morris and Gotti explore **cyclic semirings**

We characterize atomicity and the ACCP in the class of additive monoids of cyclic semirings via algebraic conditions on α , involving its conjugates, algebraic integrality, and Perron-Frobenius theory.

Additive Monoids of Cyclic Semirings

\mathbb{N}_0 = nonnegative integers. $\mathbb{N}_0[x]$ = polynomials over \mathbb{N}_0 . For $\alpha \in \mathbb{C}$, $\mathbb{N}_0[\alpha]$ = polynomials in α with coefficients from \mathbb{N}_0 ,

$$\mathbb{N}_0[\alpha] := \{f(\alpha) \mid f \in \mathbb{N}_0[x]\} \subseteq \mathbb{C}.$$

M_α = underlying additive monoid of this cyclic semiring.

Algebraic Numbers & Minimal Polynomials

A complex number is **algebraic** if it is a root to a nonzero polynomial with rational coefficients, and **transcendental** otherwise.

Fact. If ρ is transcendental, then M_ρ has unique factorization.

If α is algebraic ($\alpha \in \mathbb{A}$), it satisfies a **minimal polynomial** $m_\alpha \in \mathbb{Q}[x]$. Other roots to this polynomial are called **algebraic conjugates** of α .

Fact. If α and β are algebraic conjugates, then $M_\alpha \cong M_\beta$.

Fact. If α has no positive conjugates, then M_α forms a group.

Atomicity & Antimatterness

- **Atom** – noninvertible element with no proper nonzero factors
- **Atomic** – (each non-unit) can be written as a finite sum of atoms
- **Antimatter** – no atoms

Fact. For $\alpha \in \mathbb{A}_{>0}$, M_α is precisely one of antimatter or atomic.

Fact. If $\alpha > 1$, M_α is atomic (& ACCP). If $\alpha < 1$, atomic \Leftrightarrow 1 is an atom.

If 1 is not an atom, we may write $1 = a_1\alpha + \dots + a_n\alpha^n$. That is, $f(\alpha) = 0$ for some $f \in x\mathbb{N}_0[x] - 1$, called an **antimatter decomposition**.

- **ACCP** – no strictly ascending chains of principal ideals, or atomic and cannot subtract atoms from element arbitrarily many times

Atomicity Characterization

Theorem. For $\alpha \in \mathbb{A} \cap (0, 1)$, M_α is antimatter if and only if

- α has no positive conjugate aside from itself,
- α^{-1} is an algebraic integer,
- and α does not exceed any of its algebraic conjugates in norm.

Proof of Necessity

Descartes' Rule of Signs

#sign changes \geq #positive roots. Since f has one sign change, then m_α has a single positive root, so α has no other positive conjugate.

Algebraic Integers & Reciprocal Polynomials

Roots to monic integer polynomials are called **algebraic integers**. Since α^{-1} is a root to f^* (reciprocal polynomial of f), whose negative is monic with integer coefficients, then α^{-1} is an algebraic integer.

Frobenius Companion Matrices & Perron-Frobenius Theorem

We show the companion matrix of f^* is the (weighted) adjacency matrix of some strongly connected digraph, making it irreducible. Then, the Perron-Frobenius Theorem guarantees α^{-1} is a Frobenius root, i.e., at least as large as the norm of each of its algebraic conjugates.

Proof (Sketch) of Sufficiency

Goal. $g, h \in \mathbb{Z}[x]$ so $ghm_\alpha \in x\mathbb{N}_0[x] - 1$ (antimatter decomposition).

1. Set $g = (x+1)^N$ for some large N so gm_α has a single sign change.
2. Express h using a homogeneous linear recurrence relation.
3. Use Cramer's rule + alternants to find an explicit form for h .
4. Show $(\alpha^{-1})^n$ ultimately dominates the sequence and conclude that h is eventually positive. By the form of h , the same holds for ghm_α .

Examples

Let $q = n/d \in \mathbb{Q} \cap (0, 1)$ in lowest terms. If $n = 1$ (unit fraction), M_q is not atomic as $1 = q + q + \dots + q$ (d times). Indeed, from our theorem, q has no other algebraic conjugate and $q^{-1} = d$ is an integer (thus algebraic integer). In contrast, if $n > 1$, M_q is atomic and each power of q is an atom. However, M_q does not satisfy the ACCP because dq^n generates an ascending chain that does not stabilize. Alternatively, there is an infinite chain of strict divisions, $\dots \mid dq^3 \mid dq^2 \mid dq \mid d$.

Consider $\alpha = \sqrt[d]{q}$, so $m_\alpha = x^d - q$. While α now has distinct algebraic conjugates, none are positive and each equal α in norm. Hence, M_α is atomic precisely when M_q is. This agrees with $M_\alpha \cong M_q^k$.

ACCP Characterization

Theorem. For $\alpha \in \mathbb{A} \cap (0, 1)$, M_α satisfies the ACCP if and only if α has a positive conjugate greater than 1.

Proof

Sufficiency

Let $\beta > 1$ be a positive conjugate of α . Then, $M_\alpha \cong M_\beta$. Moreover, M_β can be listed increasingly—each atom is at least 1, so M_β is discrete.

Necessity (Sketch)

We show $(x+1)^N m_\alpha$ has its negative coefficients in clusters around each βN (for positive conjugates β of α) for large N , similar to Pólya's theorem on positive forms. So, for some $f, g \in \mathbb{N}_0[x]$, $k \in \mathbb{N}_0$, we may express that product as $(x^k - 1)f + g$. Thus, $(\alpha^{kn}f(\alpha))_{n \geq 0}$ generates an ascending chain of principal ideals that does not stabilize.

Conclusion & Discussion

Let $\alpha \in \mathbb{A}_{>0}$ be the largest positive root to m_α .

Antimatter	Atomic (desired)
$\alpha < 1, \alpha \leq \beta $ for each algebraic conjugate β , and α^{-1} is an algebraic integer	ACCP $\alpha > 1$

Remark. Our characterization in terms of the dominant root connects to Perron-Frobenius theory (nonnegative matrices and spectral radii).

These conditions produce many monoids that satisfy atomicity but not the ACCP. [3] shows the ascent of atomicity to integral domains (via **monoid algebras**) for many M_α , so our work may expand the list of counterexamples to Cohn's original assertion. Future directions are exploring notions **between** atomicity and the ACCP and **factorization invariants** (quantifying deviation instead of providing labels alone).

Acknowledgements & Selected References

We humbly appreciate our mentor Dr. Felix Gotti for his dedicated guidance, encouragement, and wisdom throughout our research and are incredibly grateful to the MIT PRIMES-USA program and its organizers for facilitating this rewarding collaboration.

- [1] F. HALTER-KOCH, *Finiteness theorems for factorizations*, Semigr. Forum, 44 (1992).
- [2] J. CORREA-MORRIS AND F. GOTTI, *On the additive structure of algebraic valuations of polynomial semirings*, J. Pure Appl. Algebra, 226 (2022).
- [3] I. PANPALIYA, *On the atomicity of one-dimensional monoid algebras*, 2024.

Scan for more details